CoolProp  4.2.5
An open-source fluid property and humid air property database
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | List of all members
phir_Lemmon2005 Class Reference

#include <Helmholtz.h>

Inheritance diagram for phir_Lemmon2005:
phi_BC

Public Member Functions

 phir_Lemmon2005 (std::vector< double >, std::vector< double >, std::vector< double >, std::vector< double >, std::vector< double >, int, int)
 
 phir_Lemmon2005 (const double[], const double[], const double[], const double[], const double[], int, int, int)
 
 phir_Lemmon2005 (double[], double[], double[], double[], double[], int, int, int)
 Destructor for the phir_Lemmon2005 class. No implementation. More...
 
 ~phir_Lemmon2005 ()
 
void to_json (rapidjson::Value &el, rapidjson::Document &doc)
 
double base (double tau, double delta) throw ()
 
double dDelta (double tau, double delta) throw ()
 
double dTau (double tau, double delta) throw ()
 
double dDelta2 (double tau, double delta) throw ()
 
double dDelta_dTau (double tau, double delta) throw ()
 
double dTau2 (double tau, double delta) throw ()
 
double dDelta3 (double tau, double delta) throw ()
 
double dDelta2_dTau (double tau, double delta) throw ()
 
double dDelta_dTau2 (double tau, double delta) throw ()
 
double dTau3 (double tau, double delta) throw ()
 
- Public Member Functions inherited from phi_BC
 phi_BC ()
 
virtual ~phi_BC ()
 

Detailed Description

This class implements residual Helmholtz Energy terms of the form

\[ \phi_r = n \delta^d \tau^t \exp(-\delta^l) \exp(-\tau^m) \]

Definition at line 361 of file Helmholtz.h.

Constructor & Destructor Documentation

phir_Lemmon2005::phir_Lemmon2005 ( std::vector< double >  n,
std::vector< double >  d,
std::vector< double >  t,
std::vector< double >  l,
std::vector< double >  m,
int  iStart_in,
int  iEnd_in 
)

Definition at line 573 of file Helmholtz.cpp.

phir_Lemmon2005::phir_Lemmon2005 ( const double  n[],
const double  d[],
const double  t[],
const double  l[],
const double  m[],
int  iStart_in,
int  iEnd_in,
int  N 
)

Definition at line 583 of file Helmholtz.cpp.

phir_Lemmon2005::phir_Lemmon2005 ( double  [],
double  [],
double  [],
double  [],
double  [],
int  ,
int  ,
int   
)

Destructor for the phir_Lemmon2005 class. No implementation.

phir_Lemmon2005::~phir_Lemmon2005 ( )
inline

Definition at line 384 of file Helmholtz.h.

Member Function Documentation

double phir_Lemmon2005::base ( double  tau,
double  delta 
)
throw (
)
virtual

Returns the base, non-dimensional, Helmholtz energy term (no derivatives) [-]

Parameters
tauReciprocal reduced temperature where tau=Tc/T
deltaReduced pressure where delta = rho / rhoc

Implements phi_BC.

Definition at line 605 of file Helmholtz.cpp.

double phir_Lemmon2005::dDelta ( double  tau,
double  delta 
)
throw (
)
virtual

Returns the first partial derivative of Helmholtz energy term with respect to delta [-]

Parameters
tauReciprocal reduced temperature where tau=Tc / T
deltaReduced pressure where delta = rho / rhoc

Implements phi_BC.

Definition at line 721 of file Helmholtz.cpp.

double phir_Lemmon2005::dDelta2 ( double  tau,
double  delta 
)
throw (
)
virtual

Returns the second partial derivative of Helmholtz energy term with respect to delta [-]

Parameters
tauReciprocal reduced temperature where tau=Tc / T
deltaReduced pressure where delta = rho / rhoc

Implements phi_BC.

Definition at line 740 of file Helmholtz.cpp.

double phir_Lemmon2005::dDelta2_dTau ( double  tau,
double  delta 
)
throw (
)
virtual

Returns the third mixed partial derivative (delta2,dtau1) of Helmholtz energy term with respect to delta and tau [-]

Parameters
tauReciprocal reduced temperature where tau=Tc / T
deltaReduced pressure where delta = rho / rhoc

Implements phi_BC.

Definition at line 783 of file Helmholtz.cpp.

double phir_Lemmon2005::dDelta3 ( double  tau,
double  delta 
)
throw (
)
virtual

Returns the third partial derivative of Helmholtz energy term with respect to delta [-]

Parameters
tauReciprocal reduced temperature where tau=Tc / T
deltaReduced pressure where delta = rho / rhoc

Implements phi_BC.

Definition at line 760 of file Helmholtz.cpp.

double phir_Lemmon2005::dDelta_dTau ( double  tau,
double  delta 
)
throw (
)
virtual

Returns the second mixed partial derivative (delta1,dtau1) of Helmholtz energy term with respect to delta and tau [-]

Parameters
tauReciprocal reduced temperature where tau=Tc / T
deltaReduced pressure where delta = rho / rhoc

Implements phi_BC.

Definition at line 804 of file Helmholtz.cpp.

double phir_Lemmon2005::dDelta_dTau2 ( double  tau,
double  delta 
)
throw (
)
virtual

Returns the third mixed partial derivative (delta1,dtau2) of Helmholtz energy term with respect to delta and tau [-]

Parameters
tauReciprocal reduced temperature where tau=Tc / T
deltaReduced pressure where delta = rho / rhoc

Implements phi_BC.

Definition at line 700 of file Helmholtz.cpp.

double phir_Lemmon2005::dTau ( double  tau,
double  delta 
)
throw (
)
virtual

Returns the first partial derivative of Helmholtz energy term with respect to tau [-]

Parameters
tauReciprocal reduced temperature where tau=Tc/T
deltaReduced pressure where delta = rho / rhoc

Implements phi_BC.

Definition at line 619 of file Helmholtz.cpp.

double phir_Lemmon2005::dTau2 ( double  tau,
double  delta 
)
throw (
)
virtual

Returns the second partial derivative of Helmholtz energy term with respect to tau [-]

Parameters
tauReciprocal reduced temperature where tau=Tc/T
deltaReduced pressure where delta = rho / rhoc

Implements phi_BC.

Definition at line 635 of file Helmholtz.cpp.

double phir_Lemmon2005::dTau3 ( double  tau,
double  delta 
)
throw (
)
virtual

\[ \frac{{{\partial ^2}{\alpha ^r}}}{{\partial {\tau ^2}}} = {N_k}{\delta ^{{d_k}}}{\tau ^{{t_k} - 2}}\exp \left( { - {\delta ^{{l_k}}}} \right)\exp \left( { - {\tau ^{{m_k}}}} \right)\left[ {\left( {{t_k} - {m_k}{\tau ^{{m_k}}}} \right)\left( {{t_k} - 1 - {m_k}{\tau ^{{m_k}}}} \right) - m_k^2{\tau ^{{m_k}}}} \right]\\ \]

\[ \frac{{{\partial ^2}{\alpha ^r}}}{{\partial {\tau ^2}}} = {N_k}{\delta ^{{d_k}}}\exp \left( { - {\delta ^{{l_k}}}} \right){\tau ^{{t_k} - 2}}\exp \left( { - {\tau ^{{m_k}}}} \right)\left[ {\left( {{t_k} - {m_k}{\tau ^{{m_k}}}} \right)\left( {{t_k} - 1 - {m_k}{\tau ^{{m_k}}}} \right) - m_k^2{\tau ^{{m_k}}}} \right]\\ \]

Group all the terms that don't depend on $ $

\[ \frac{{{\partial ^2}{\alpha ^r}}}{{\partial {\tau ^2}}} = A{\tau ^{{t_k} - 2}}\exp \left( { - {\tau ^{{m_k}}}} \right)\left[ {\left( {{t_k} - {m_k}{\tau ^{{m_k}}}} \right)\left( {{t_k} - 1 - {m_k}{\tau ^{{m_k}}}} \right) - m_k^2{\tau ^{{m_k}}}} \right]\\ \]

\[ \frac{1}{A}\frac{{{\partial ^3}{\alpha ^r}}}{{\partial {\tau ^3}}} = {\tau ^{{t_k} - 2}}\exp \left( { - {\tau ^{{m_k}}}} \right)\frac{\partial }{{\partial \tau }}\left[ {\left( {{t_k} - {m_k}{\tau ^{{m_k}}}} \right)\left( {{t_k} - 1 - {m_k}{\tau ^{{m_k}}}} \right) - m_k^2{\tau ^{{m_k}}}} \right] + \frac{\partial }{{\partial \tau }}\left[ {{\tau ^{{t_k} - 2}}\exp \left( { - {\tau ^{{m_k}}}} \right)} \right]\left[ {\left( {{t_k} - {m_k}{\tau ^{{m_k}}}} \right)\left( {{t_k} - 1 - {m_k}{\tau ^{{m_k}}}} \right) - m_k^2{\tau ^{{m_k}}}} \right]\\ \]

\[ \frac{\partial }{{\partial \tau }}\left[ {{\tau ^{{t_k} - 2}}\exp \left( { - {\tau ^{{m_k}}}} \right)} \right] = ({t_k} - 2){\tau ^{{t_k} - 3}}\exp \left( { - {\tau ^{{m_k}}}} \right) + {\tau ^{{t_k} - 2}}\exp \left( { - {\tau ^{{m_k}}}} \right)( - {m_k}{\tau ^{{m_k} - 1}}) = \exp \left( { - {\tau ^{{m_k}}}} \right)\left( {({t_k} - 2){\tau ^{{t_k} - 3}} - {\tau ^{{t_k} - 2}}{m_k}{\tau ^{{m_k} - 1}}} \right)\\ \]

\[ \frac{\partial }{{\partial \tau }}\left[ {\left( {{t_k} - {m_k}{\tau ^{{m_k}}}} \right)\left( {{t_k} - 1 - {m_k}{\tau ^{{m_k}}}} \right) - m_k^2{\tau ^{{m_k}}}} \right] = \left( {{t_k} - {m_k}{\tau ^{{m_k}}}} \right)\left( { - m_k^2{\tau ^{{m_k} - 1}}} \right) + \left( { - m_k^2{\tau ^{{m_k} - 1}}} \right)\left( {{t_k} - 1 - {m_k}{\tau ^{{m_k}}}} \right) - m_k^3{\tau ^{{m_k} - 1}} = - m_k^2{\tau ^{{m_k} - 1}}\left[ {{t_k} - {m_k}{\tau ^{{m_k}}} + {t_k} - 1 - {m_k}{\tau ^{{m_k}}} + {m_k}} \right] = - m_k^2{\tau ^{{m_k} - 1}}\left[ {2{t_k} - 2{m_k}{\tau ^{{m_k}}} - 1 + {m_k}} \right]\\ \]

\[ \frac{1}{A}\frac{{{\partial ^3}{\alpha ^r}}}{{\partial {\tau ^3}}} = {\tau ^{{t_k} - 2}}\exp \left( { - {\tau ^{{m_k}}}} \right)\left( { - m_k^2{\tau ^{{m_k} - 1}}\left[ {2{t_k} - 2{m_k}{\tau ^{{m_k}}} - 1 + {m_k}} \right]} \right) + \exp \left( { - {\tau ^{{m_k}}}} \right)\left( {({t_k} - 2){\tau ^{{t_k} - 3}} - {\tau ^{{t_k} - 2}}{m_k}{\tau ^{{m_k} - 1}}} \right)\left[ {\left( {{t_k} - {m_k}{\tau ^{{m_k}}}} \right)\left( {{t_k} - 1 - {m_k}{\tau ^{{m_k}}}} \right) - m_k^2{\tau ^{{m_k}}}} \right]\\ \]

\[ \frac{1}{A}\frac{{{\partial ^3}{\alpha ^r}}}{{\partial {\tau ^3}}} = \exp \left( { - {\tau ^{{m_k}}}} \right)\left[ { - {\tau ^{{t_k} - 2}}m_k^2{\tau ^{{m_k} - 1}}\left[ {2{t_k} - 2{m_k}{\tau ^{{m_k}}} - 1 + {m_k}} \right] + \left( {({t_k} - 2){\tau ^{{t_k} - 3}} - {\tau ^{{t_k} - 2}}{m_k}{\tau ^{{m_k} - 1}}} \right)\left[ {\left( {{t_k} - {m_k}{\tau ^{{m_k}}}} \right)\left( {{t_k} - 1 - {m_k}{\tau ^{{m_k}}}} \right) - m_k^2{\tau ^{{m_k}}}} \right]} \right] \]

Implements phi_BC.

Definition at line 681 of file Helmholtz.cpp.

void phir_Lemmon2005::to_json ( rapidjson::Value el,
rapidjson::Document doc 
)
virtual

Implements phi_BC.

Definition at line 553 of file Helmholtz.cpp.


The documentation for this class was generated from the following files: