CoolProp
4.2.5
An open-source fluid property and humid air property database
|
#include <Helmholtz.h>
Public Member Functions | |
phir_Lemmon2005 (std::vector< double >, std::vector< double >, std::vector< double >, std::vector< double >, std::vector< double >, int, int) | |
phir_Lemmon2005 (const double[], const double[], const double[], const double[], const double[], int, int, int) | |
phir_Lemmon2005 (double[], double[], double[], double[], double[], int, int, int) | |
Destructor for the phir_Lemmon2005 class. No implementation. More... | |
~phir_Lemmon2005 () | |
void | to_json (rapidjson::Value &el, rapidjson::Document &doc) |
double | base (double tau, double delta) throw () |
double | dDelta (double tau, double delta) throw () |
double | dTau (double tau, double delta) throw () |
double | dDelta2 (double tau, double delta) throw () |
double | dDelta_dTau (double tau, double delta) throw () |
double | dTau2 (double tau, double delta) throw () |
double | dDelta3 (double tau, double delta) throw () |
double | dDelta2_dTau (double tau, double delta) throw () |
double | dDelta_dTau2 (double tau, double delta) throw () |
double | dTau3 (double tau, double delta) throw () |
Public Member Functions inherited from phi_BC | |
phi_BC () | |
virtual | ~phi_BC () |
This class implements residual Helmholtz Energy terms of the form
\[ \phi_r = n \delta^d \tau^t \exp(-\delta^l) \exp(-\tau^m) \]
Definition at line 361 of file Helmholtz.h.
phir_Lemmon2005::phir_Lemmon2005 | ( | std::vector< double > | n, |
std::vector< double > | d, | ||
std::vector< double > | t, | ||
std::vector< double > | l, | ||
std::vector< double > | m, | ||
int | iStart_in, | ||
int | iEnd_in | ||
) |
Definition at line 573 of file Helmholtz.cpp.
phir_Lemmon2005::phir_Lemmon2005 | ( | const double | n[], |
const double | d[], | ||
const double | t[], | ||
const double | l[], | ||
const double | m[], | ||
int | iStart_in, | ||
int | iEnd_in, | ||
int | N | ||
) |
Definition at line 583 of file Helmholtz.cpp.
phir_Lemmon2005::phir_Lemmon2005 | ( | double | [], |
double | [], | ||
double | [], | ||
double | [], | ||
double | [], | ||
int | , | ||
int | , | ||
int | |||
) |
Destructor for the phir_Lemmon2005 class. No implementation.
|
inline |
Definition at line 384 of file Helmholtz.h.
|
virtual |
Returns the base, non-dimensional, Helmholtz energy term (no derivatives) [-]
tau | Reciprocal reduced temperature where tau=Tc/T |
delta | Reduced pressure where delta = rho / rhoc |
Implements phi_BC.
Definition at line 605 of file Helmholtz.cpp.
|
virtual |
Returns the first partial derivative of Helmholtz energy term with respect to delta [-]
tau | Reciprocal reduced temperature where tau=Tc / T |
delta | Reduced pressure where delta = rho / rhoc |
Implements phi_BC.
Definition at line 721 of file Helmholtz.cpp.
|
virtual |
Returns the second partial derivative of Helmholtz energy term with respect to delta [-]
tau | Reciprocal reduced temperature where tau=Tc / T |
delta | Reduced pressure where delta = rho / rhoc |
Implements phi_BC.
Definition at line 740 of file Helmholtz.cpp.
|
virtual |
Returns the third mixed partial derivative (delta2,dtau1) of Helmholtz energy term with respect to delta and tau [-]
tau | Reciprocal reduced temperature where tau=Tc / T |
delta | Reduced pressure where delta = rho / rhoc |
Implements phi_BC.
Definition at line 783 of file Helmholtz.cpp.
|
virtual |
Returns the third partial derivative of Helmholtz energy term with respect to delta [-]
tau | Reciprocal reduced temperature where tau=Tc / T |
delta | Reduced pressure where delta = rho / rhoc |
Implements phi_BC.
Definition at line 760 of file Helmholtz.cpp.
|
virtual |
Returns the second mixed partial derivative (delta1,dtau1) of Helmholtz energy term with respect to delta and tau [-]
tau | Reciprocal reduced temperature where tau=Tc / T |
delta | Reduced pressure where delta = rho / rhoc |
Implements phi_BC.
Definition at line 804 of file Helmholtz.cpp.
|
virtual |
Returns the third mixed partial derivative (delta1,dtau2) of Helmholtz energy term with respect to delta and tau [-]
tau | Reciprocal reduced temperature where tau=Tc / T |
delta | Reduced pressure where delta = rho / rhoc |
Implements phi_BC.
Definition at line 700 of file Helmholtz.cpp.
|
virtual |
Returns the first partial derivative of Helmholtz energy term with respect to tau [-]
tau | Reciprocal reduced temperature where tau=Tc/T |
delta | Reduced pressure where delta = rho / rhoc |
Implements phi_BC.
Definition at line 619 of file Helmholtz.cpp.
|
virtual |
Returns the second partial derivative of Helmholtz energy term with respect to tau [-]
tau | Reciprocal reduced temperature where tau=Tc/T |
delta | Reduced pressure where delta = rho / rhoc |
Implements phi_BC.
Definition at line 635 of file Helmholtz.cpp.
|
virtual |
\[ \frac{{{\partial ^2}{\alpha ^r}}}{{\partial {\tau ^2}}} = {N_k}{\delta ^{{d_k}}}{\tau ^{{t_k} - 2}}\exp \left( { - {\delta ^{{l_k}}}} \right)\exp \left( { - {\tau ^{{m_k}}}} \right)\left[ {\left( {{t_k} - {m_k}{\tau ^{{m_k}}}} \right)\left( {{t_k} - 1 - {m_k}{\tau ^{{m_k}}}} \right) - m_k^2{\tau ^{{m_k}}}} \right]\\ \]
\[ \frac{{{\partial ^2}{\alpha ^r}}}{{\partial {\tau ^2}}} = {N_k}{\delta ^{{d_k}}}\exp \left( { - {\delta ^{{l_k}}}} \right){\tau ^{{t_k} - 2}}\exp \left( { - {\tau ^{{m_k}}}} \right)\left[ {\left( {{t_k} - {m_k}{\tau ^{{m_k}}}} \right)\left( {{t_k} - 1 - {m_k}{\tau ^{{m_k}}}} \right) - m_k^2{\tau ^{{m_k}}}} \right]\\ \]
Group all the terms that don't depend on $ $
\[ \frac{{{\partial ^2}{\alpha ^r}}}{{\partial {\tau ^2}}} = A{\tau ^{{t_k} - 2}}\exp \left( { - {\tau ^{{m_k}}}} \right)\left[ {\left( {{t_k} - {m_k}{\tau ^{{m_k}}}} \right)\left( {{t_k} - 1 - {m_k}{\tau ^{{m_k}}}} \right) - m_k^2{\tau ^{{m_k}}}} \right]\\ \]
\[ \frac{1}{A}\frac{{{\partial ^3}{\alpha ^r}}}{{\partial {\tau ^3}}} = {\tau ^{{t_k} - 2}}\exp \left( { - {\tau ^{{m_k}}}} \right)\frac{\partial }{{\partial \tau }}\left[ {\left( {{t_k} - {m_k}{\tau ^{{m_k}}}} \right)\left( {{t_k} - 1 - {m_k}{\tau ^{{m_k}}}} \right) - m_k^2{\tau ^{{m_k}}}} \right] + \frac{\partial }{{\partial \tau }}\left[ {{\tau ^{{t_k} - 2}}\exp \left( { - {\tau ^{{m_k}}}} \right)} \right]\left[ {\left( {{t_k} - {m_k}{\tau ^{{m_k}}}} \right)\left( {{t_k} - 1 - {m_k}{\tau ^{{m_k}}}} \right) - m_k^2{\tau ^{{m_k}}}} \right]\\ \]
\[ \frac{\partial }{{\partial \tau }}\left[ {{\tau ^{{t_k} - 2}}\exp \left( { - {\tau ^{{m_k}}}} \right)} \right] = ({t_k} - 2){\tau ^{{t_k} - 3}}\exp \left( { - {\tau ^{{m_k}}}} \right) + {\tau ^{{t_k} - 2}}\exp \left( { - {\tau ^{{m_k}}}} \right)( - {m_k}{\tau ^{{m_k} - 1}}) = \exp \left( { - {\tau ^{{m_k}}}} \right)\left( {({t_k} - 2){\tau ^{{t_k} - 3}} - {\tau ^{{t_k} - 2}}{m_k}{\tau ^{{m_k} - 1}}} \right)\\ \]
\[ \frac{\partial }{{\partial \tau }}\left[ {\left( {{t_k} - {m_k}{\tau ^{{m_k}}}} \right)\left( {{t_k} - 1 - {m_k}{\tau ^{{m_k}}}} \right) - m_k^2{\tau ^{{m_k}}}} \right] = \left( {{t_k} - {m_k}{\tau ^{{m_k}}}} \right)\left( { - m_k^2{\tau ^{{m_k} - 1}}} \right) + \left( { - m_k^2{\tau ^{{m_k} - 1}}} \right)\left( {{t_k} - 1 - {m_k}{\tau ^{{m_k}}}} \right) - m_k^3{\tau ^{{m_k} - 1}} = - m_k^2{\tau ^{{m_k} - 1}}\left[ {{t_k} - {m_k}{\tau ^{{m_k}}} + {t_k} - 1 - {m_k}{\tau ^{{m_k}}} + {m_k}} \right] = - m_k^2{\tau ^{{m_k} - 1}}\left[ {2{t_k} - 2{m_k}{\tau ^{{m_k}}} - 1 + {m_k}} \right]\\ \]
\[ \frac{1}{A}\frac{{{\partial ^3}{\alpha ^r}}}{{\partial {\tau ^3}}} = {\tau ^{{t_k} - 2}}\exp \left( { - {\tau ^{{m_k}}}} \right)\left( { - m_k^2{\tau ^{{m_k} - 1}}\left[ {2{t_k} - 2{m_k}{\tau ^{{m_k}}} - 1 + {m_k}} \right]} \right) + \exp \left( { - {\tau ^{{m_k}}}} \right)\left( {({t_k} - 2){\tau ^{{t_k} - 3}} - {\tau ^{{t_k} - 2}}{m_k}{\tau ^{{m_k} - 1}}} \right)\left[ {\left( {{t_k} - {m_k}{\tau ^{{m_k}}}} \right)\left( {{t_k} - 1 - {m_k}{\tau ^{{m_k}}}} \right) - m_k^2{\tau ^{{m_k}}}} \right]\\ \]
\[ \frac{1}{A}\frac{{{\partial ^3}{\alpha ^r}}}{{\partial {\tau ^3}}} = \exp \left( { - {\tau ^{{m_k}}}} \right)\left[ { - {\tau ^{{t_k} - 2}}m_k^2{\tau ^{{m_k} - 1}}\left[ {2{t_k} - 2{m_k}{\tau ^{{m_k}}} - 1 + {m_k}} \right] + \left( {({t_k} - 2){\tau ^{{t_k} - 3}} - {\tau ^{{t_k} - 2}}{m_k}{\tau ^{{m_k} - 1}}} \right)\left[ {\left( {{t_k} - {m_k}{\tau ^{{m_k}}}} \right)\left( {{t_k} - 1 - {m_k}{\tau ^{{m_k}}}} \right) - m_k^2{\tau ^{{m_k}}}} \right]} \right] \]
Implements phi_BC.
Definition at line 681 of file Helmholtz.cpp.
|
virtual |
Implements phi_BC.
Definition at line 553 of file Helmholtz.cpp.